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Cross-Market Signals
Abstract

This thesis explores the growing interconnectedness of global markets,

with a focus on the explanatory power U.S. and China

macroeconomic factors have on each other’s stock market returns.

Using the JKP Global Factors Dataset with 13 themes and 153

factors, we model this relationship using linear regressions, sparse

additive models, and kernel regressions. The analyses were conducted

using the Wilshire 5000 and Shanghai Composite returns.

Across all models, U.S. economic data consistently improved the

predictions of Chinese market returns, but Chinese economic data

rarely added improved the predictions of U.S. market returns. Linear

regressions revealed decent R2 values using domestic data, with

0.70 ≤ R2 ≤ 0.80 for the U.S. market and 0.55 ≤ R2 ≤ 0.60 for the

Chinese market. Sparse additive models and kernel regressions

achieved higher R2 values in the data. They were more likely to

overfit to the data, with the partial dependence plots sometimes not

following economic intuition. Future directions include accounting for

interaction effects, attempting rolling-window methods, and exploring

sector-level analyses to obtain more granular insights into market

spillovers.
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What we have seen in financial markets should
bring home to us all that the central organizing
principle of this 21st century is interdependence.

Kevin Rudd

1
Introduction

In the era of globalization, financial markets have become increasingly
interconnected. Economies are linked by multinational companies and
global supply chains. Economic conditions in one region of the world
typically also influence others around the world. Financial shocks in
one country can quickly impact markets in other countries, increasing
the complexity of markets.

As global interconnectedness increases, understanding the
mechanisms by which national markets are connected is an important
task for investors, policymakers, and financial researchers. Investors
wanting to diversity their portfolio may question to what degree
markets can be independent of each other. Policymakers must
understand the impact of international regulations on the markets.
Financial researchers attempting to understand markets must now
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consider links with other international markets, increasing the
complexity of the research.

1.1 Background Information

The 1980s and 1990s were fueled by market liberalization, in which
many countries relaxed capital regulations and allowed money to flow
more easily across borders.[2] This caused investors to start investing
in foreign stocks and bonds, leading to a period of rapid growth in
international equity and debt markets.[2] In the 1970s, the annual
foreign direct investment by multinational corporations was about $13
billion; by 2023, it had increased to $1.37 trillion. The result of this
era was the normalization of global portfolios and significantly more
interconnected financial markets.

In the resulting markets, price movements, trends, and financial
crises in one country’s market can quickly advance to other markets.
This is seen at a large scale in cases as early as the 1997 Asian
Financial Crisis, during which a currency crisis in Thailand led to
steep market declines in Malaysia, Indonesia, and South Korea and
led to spillover effects in Russia, Latin America, and Eastern
Europe.[12] The 2008 Financial Crisis began as the collapse of the
U.S. housing bubble and evolved into the worst global recession in
decades, leading to the major financial institutions across Europe
requiring government bailouts within a year.[12] In 2015, a sharp
selloff in the Chinese market resulted in the Dow Jones falling by over
1,000 points at the next trade open.[12] Most recently with the
COVID-19 Pandemic in early 2020, uncertainty and fear by the
pandemic sparked market crashes all around the world.[12]

More importantly, studies have shown that spillovers between the
U.S. market and other regions increased after these global crises. The
markets are so interconnected that they cannot live in isolation, and
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their interconnectedness will only keep growing.
The structure of this interdependence is an important field of study

in international finance, typically focusing on links between two
specific countries. Much of the literature has focused on measuring the
integration of markets through correlations, co-movements, and global
factors. We do not fully understand how information from one market
can be used to statistically replicate the return structure of another.

These strategies are especially important in the case of the U.S. and
Chinese equity markets, which make up over 60% of the global stock
market capitalization. Historically, U.S. market signals influenced
markets in Europe and Asia, with China remaining isolated and not
impacted by foreign changes. This has changed dramatically over the
past decade as China has now integrated itself in the global markets.
China allowed international investors to trade certain Chinese
A-shares for the first time in 2014.[8] More than a decade later, U.S.
investors hold increasing stakes in Chinese companies and Chinese
firms are listed on American exchanges, demonstrating an
interconnectedness that impacts both equity markets.

This thesis addresses the information gap by investigating the
extent to which U.S. and Chinese macroeconomic factors and
market-based signals can be used to replicate returns in the U.S. and
Chinese equity markets. As a measure of economic co-integration, this
thesis employs methods to estimate how much additional explanatory
power is gained by adding one country’s economic factors to a model
that estimates the other country’s market returns using it’s own
economic factors. If the additional set of factors add a lot of
explanatory power, then there must be some level of market spillovers,
with spillovers in both directions implying co-integration. This
analysis is conducted using linear models with regularization,
generalized additive models, and kernel regression. The investigations
in this thesis will also include data from 13 themes and over 150
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factors representing the U.S. and Chinese economies, with some
measurements dating back to the 1920s. The data is also available at
daily and monthly granularity, with 1,164 rows in the monthly dataset
and nearly 3 million rows in the daily dataset.

1.2 Literature Review

1.2.1 Foundational Asset Pricing Theories

Introduced by Harry Markowitz in 1952, the Markowitz model was a
revolutionary portfolio optimization model that maximized expected
return at set levels of risk, typically measured by standard
deviation.[11] The model showed that by diversifying a portfolio,
investors can take advantage of a fronteir of optimal risk-return
trade-offs. This model was so impactful that it started an entire new
field: Modern Portfolio Theory.

The Capital Asset Pricing Model was introduced independently by
Treynor, Sharpe, Lintner, and Mossin between 1961 and 1966.[14] It
extended the pricing model by separating systematic risk from
idiosyncratic risk. In 1964 and 1965, Sharpe and Lintner showed that
the market portfolio, a portfolio in which each asset is weighted
proportionally to its presence in the market, is mean-variance efficient
under a few assumptions.[14] This implied that all investors should
hold a combination of the market and a risk-free asset.

However, the model did not hold empirically, and in 1976, Ross
developed the Arbitrage Pricing Theory, which generalized this from a
singular market risk factor to multiple risk factors.[18] The Arbitrage
Pricing Theory does not specify the factors a priori and assumes that
the relationship between expected returns and factor exposures is
linear.

In the 1990s, Fama and French showed that a couple systematic
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factors can help explain movements in equity returns better than any
single market beta.[3] The factors were initially size and value, though
they added market in their three-factor model. Carhart introduced
momentum as a fourth factor in 1997, and Fama and French proposed
a five-factor model in 2015 with profitability and investment.[1, 4]
This has sparked an interest in using factors to understand equity
market returns.

1.2.2 Global Market Integration

Whether or not a set of economic factors from one country can
replicate the returns depends crucially on the degree to which the
markets are globally integrated. If they are highly integrated, they
can be impacted by the same global factors. Otherwise, the markets
might be more impacted by local idiosyncratic factors.

In 1995, Bekaert and Harvey found time-varying world market
integration among the 12 emerging markets they examined, many of
which exhibited only partial integration.[5] They noted that
integration is expected to increase with financial liberalization.
During the late 20th century, developed markets in the West were
fairly integrated and emerging markets in Asia and Latin America
were more segmented.

Pukthuanthong and Roll showed in 2009 that correlation alone is
not a valid measure of integration, arguing that markets that are
perfectly integrated can have low correlations if they are impacted
differently by global factors.[10] They proposed using measure of the
variance explained by models using the factors as predictors to predict
the returns of the market—they specifically suggested R2 in
multi-factor models.[10]

It’s important to note that China had a largely isolationist policy
until 2014, historically operating with tighter capital controls. As
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such, China was for a long time partially segmented from the world,
and its markets were no different. Analyses done in the 2000s revealed
little integration with the global economy.

1.2.3 Cross-Market Return Replication as a Measure of
Integration

An emerging approach in the literature is to assess market integration
by testing how well one market’s return can be replicated using
factors from another market. If two markets are integrated, then the
economic factors that drive one market should explain some
variability in the other.

An attempt to explain Chinese A-share portfolio returns using U.S.
risk factors for 1993-2006 data by Brooks et al. (2010) found that the
Chinese market was almost completely segmented, with U.S. factors
adding no explanatory power over the Chinese factors.[17] As China’s
markets liberalized, replication studies found stronger links between
the U.S. and Chinese markets. Goh et al. (2013) found no link
between the countries before China entered the World Trade
Organization in 2001 and a strong link after, characterized by a set of
U.S. economic factors showing significant predictive power for Chinese
stock returns.[7] This trend is increasing, with recent literature
showing that the Chinese market becoming so integral to the global
economy that its lagged returns can predict returns in numerous other
markets worldwide. Chinese market integration is expected to
continue to grow, extending trends from the past decade.

1.2.4 Comparison with Traditional Integration Metrics

Classical approaches for market integration metrics have relied on
correlational studies bewteen the markets, cointegration testing for
long-term relationships, and comparing factor exposures in global
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CAPM or mutli-factor models.

Correlation-Based Measures

Although Pukthuanthong and Roll showed that correlation is not a
valid measure of integration, Billio et al. found that many advanced
integration measures yielded the same patterns as rolling
correlations.[13] Regardless of effectiveness, correlation-based
measures only analyze co-movement strength and do not dive into the
underlying drivers behind the movements of each market.
Correlational studies also assume linear and uniform relationships
between the markets.

Cointegration and Long-Run Parity Tests

Another common approach is to test whether markets are
cointegrated, typically assessed by the Johansen test. For two markets
to be co-integrated, their divergences must revert to the mean.
Though cointegration studies between China and the U.S. show
cointegration only after China’s market started liberalizing,
cointegration is often a binary indicator with no value representing
the strength of the relationship.

Shared Factor Exposure Models

The most recent methodology is to replicate each market using a
subset of global factors and compare the two sets of factors that
explain the most variability in the returns. If the same global CAPM
or multi-factor model can represent both markets without needing
country-specific data, integration between the markets is implied. The
Fama-French models are a popular attempt to do this with preset
factors, often comprising of three or five factors. These are often
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limiting as they are a static set of factors that are limited in
complexity.

1.2.5 Advantages of the Return Replication Approach

Returns replication has several advantages over these methods. First,
it analyzes the underlying effects of the integration and determines
the relative strength of different factors. Second, the lack of a
standardized set of factors allows for a more robust measurement that
is more capable of capturing the true market relationship. The results
naturally follow a practical economic meaning. Lastly, this replication
approach is capable of taking advantage of modern econometric and
machine learning techniques like linear models with regularization,
generalized additive models, and kernel regressions.
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2
Statistical Framework

2.1 Theoretical Framework and Statistical For-
mulation

2.1.1 General Model

A primitive approach to the portfolio replication problem is to
re-frame it as an optimization problem in which asset weights are
chosen to minimize a loss function that quantifies the error of the
constructed portfolio. While a more primitive approach, linear models
have a deep root in the statistical applications in finance.
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Probabilistic Setup

Let (Ω,F , P ) be the probability space representing the financial
markets. Define the following two random variables on this space: RM

t

representing the target market return and RP
t representing the

replicating portfolio return at time t. Assume that both RM
t and RP

t

are well-defined distributions with finite mean and variance and that
they are mean-centered.

Let µM = E[RM
t ] = 0 and µP = E[RP

t ] = 0 for their expected values,
σ2
M = Var(RM

t ) and σ2
P = Var(RP

t ) for their variances, and
Cov(RM

t , RP
t ) for their covariance.

Portfolio Replication Problem

The portfolio replication problem is one of constructing a replicating
portfolio with returns that closely match the target market’s returns
distribution. Suppose we have a vector of N asset returns or set of
factors R⃗t = (R1,t, R2,t, . . . , RN,t)

⊤ that serve as building blocks; note
that these are assumed to be linearly independent and mean-centered.

A replicating portfolio is defined by a weight vector
w⃗ = (w1, . . . , wN)

⊤ such that the returns of the replicating portfolio
are RP

t = w⃗⊤R⃗t =
∑N

i=1 wiRi,t. There are several constraints that can
be placed on the weight vector: (1) for a fully invested portfolio, the
weights must sum to 1, (2) if short-selling is prohibited, the weights
must all be non-negative.

Optimal Linear Replication

We can think of the portfolio replication problem as a stochastic
optimization problem, in which the objective function is the mean
squared tracking error. More formally, we must find w⃗∗ that
minimizes E

[(
RM

t − w⃗⊤R⃗t

)2]
subject to any portfolio constraints.
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Imposing the expectation matching constraint to ensure that the
replicating portfolio is unbiased, we have:

E[RP
t ] = E[RM

t ]

Since RP
t = w⃗⊤R⃗t, we have:

w⃗⊤E[R⃗t] = µM

This is naturally satisfied under the assumption that asset returns are
mean-centered.

Thus, we select:

w⃗∗ = argmin
w⃗

E
[(

RM
t − w⃗⊤R⃗t

)2]
Expanding, we get:

w⃗∗ = argmin
w⃗

E
[(
RM

t

)2 − 2RM
t w⃗⊤R⃗t +

(
w⃗⊤R⃗t

)2]
Applying linearity of expectation:

w⃗∗ = argmin
w⃗

{
E
[
(RM

t )2
]
− 2w⃗⊤E[RM

t R⃗t] + w⃗⊤E[R⃗tR⃗
⊤
t ]w⃗

}
Because E

[
(RM

t )2
]

does not depend on w⃗, it can be ignored when
finding the minimum.

Let µ⃗ = E[R⃗t] be the mean vector of basis returns; note that
because R⃗t is mean-centered, this is a zero vector. We can calculate
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the covariance as:

Σ = Cov(R⃗t, R⃗t)

= E[(R⃗t − µ⃗)(R⃗t − µ⃗)⊤]

= E[R⃗tR⃗
⊤
t ]

The covariance vector between basis returns and target returns is
given by:

σ⃗M = Cov(RM
t , R⃗t)

= E[(RM
t − µM)(R⃗t − µ⃗)]

= E[RM
t R⃗t]− µME[R⃗t]− E[RM

t ]µ⃗+ µM µ⃗

= E[RM
t R⃗t] ( µ⃗ = E[R⃗t] = 0⃗ )

Thus, the minimization can be simplified to:

w⃗∗ = argmin
w⃗

{
−2w⃗⊤σ⃗M + w⃗⊤Σw⃗

}
Taking the derivative with respect to w⃗ and setting the derivative as
zero, we get:

−2σ⃗M + 2Σw⃗ = 0

Implying:
Σw⃗ = σ⃗M

Assuming Σ is invertible, the optimal vector is given by:

w⃗∗ = Σ−1σ⃗M

We can verify this solution is a minimum and not a maximum by
taking the second derivative with respect to w⃗ we get the Hessian
matrix H = 2Σ, which is independent of w⃗. If Σ is positive definite,
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then H will also be positive definite. The covariance matrix is
symmetric and positive semidefinite by definition, and is positive
definite if and only if the returns are linearly independent; this follows
from our assumption that Σ is invertible. The function is thus strictly
convex, and the optimal weights are at a global minimum.

Note that assuming linear independence works in theory, but we
might encounter near-collinearity in the data, especially as the
number of factors increases. This will be addressed in the
computational section of this thesis.

This vector represents the best linear unbiased replication of the
target portfolio’s return, and it has the highest possible correlation
with RM

t using a linear combination of the factors. We can define the
residual error as ϵt = RM

t −RP
t ; it has minimal variance at w⃗∗. We

can evaluate the quality of the replicating portfolio by comparing ϵt

with the variance of RM
t .

Distributional Assumptions

This model includes several important distributional assumptions.
The return distributions RM

t and RP
t are assumed to be well-defined,

with finite mean and variance. They are also assumed to be
stationary. The target returns RM

t and the factor returns R⃗t are
assumed to be mean-centered; this implies that RP

t is also
mean-centered. The factors are assumed to be linearly independent,
so that their covariance matrix is invertible.

Note that joint normality of returns is not required for the
derivations above. However, if assumed, the conditional expectation
E[RM

t |R⃗t] is a linear function of R⃗t, and the best linear predictor
generated from w⃗∗ is guaranteed to be the best predictor.
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U.S. Macroeconomic Factors and Market Returns

This framework will will be applied to model the relationship between
U.S. macroeconomic factors and stock market indexes in both the
U.S. and China. Setting the target return RM

t to the Wilshire 5000,
we can construct RP

t from a set of U.S. macroeconomic factors
X⃗ ∈ Rm. Our basis vector thus becomes R⃗t ≡ X⃗t and the optimal
weight vector w⃗∗ represents the optimal weighted sum of factors that
best approximates the US market returns. Similarly, we can set RM

t

to a Chinese market index that represents Chinese market returns,
and we can analyze the optimal weight vector.

The validity of these models should be closely assessed as some of
the model assumptions might not hold. First, the macroeconomic
variables in X⃗t might be collinear, leading to unstable coefficient
estimates. Second, economic factors might not be stationary. Third,
the assumption that the covariance between the macroeconomic
factors and market returns should remain relatively stable over time
might not hold empirically.

It is important to note that in the general model the primary goal
is to construct a replicating portfolio that tracks the index by
minimizing the MSE. Unlike the future models, it does not decompose
the risks associated with the investment.

2.1.2 Generalized Additive Models

So far, we’ve assumed a linear relationship among the factors in which
each factor linearly impacts market returns. Generalized Additive
Models (GAMs) allow for nonlinear relationships between each factors
and market returns. In the context of the U.S. and Chinese markets,
GAMs help in quantifying how U.S. economic conditions nonlinearly
influence asset returns.
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Model Formulation and Statistical Background

A generalized additive model (GAM) is different from traditional
linear regressions as it allows for nonlinear transformations of each
predictor. Formally, it allows us to model returns as

RM
t = α + f1(Xt,1) + f2(Xt,2) + · · ·+ fd(Xt,d) + ϵt

where α is an intercept and fj are arbitrary smooth functions
representing the effect of predictor Xj on RM

t . As usual, ϵt represents
the error term and has a zero mean.

Generally, RM
t can follow any exponential-family distribution with

a link function g such that g(E[RM
t |X]) = α +

∑
j fj(Xj).

Additionally, the following constraint is imposed for identifiability:
each smooth function must have zero mean over the sample, formally
shown as

∑d
t=1 fj(Xt,j) = 0 for all j. This nesures that α captures the

overall mean of RM
t , making the additive decomposition unique.

Connection to Linear Models and Basis Expansions

If we restrict each smooth function to be linear, such that
fj(Xt,j) = βjXt,j, then the GAM reduces to a multiple linear
regression, in which RM

t = α + β1Xt,1 + β2Xt,2 + · · ·+ βdXt,d + ϵt.
GAMs are extensions of linear models in which the effects are still
additive but can be nonlinear.

The smooth functions fj(x) are unknown and are estimated from
the data. The traditional way to do this is to represent each one using
a set of basis function, converting the problem into a linear regression
in those basis terms. More formally, we can write
fj(x) =

∑Kj

k=1 βj,kbj,k(x), where βj,k are estimated from the data. This
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gives us the following overall model:

RM
t = α +

d∑
j=1

Kj∑
k=1

βj,kbj,k(Xt,j)

This model is linear in the parameters βj,k, but is not linear in
terms of the original variables Xj. The choice of basis complexity is
crucial for avoiding overfitting to the noise. Including a smoothness
penalty can help ensure smooth trends are captured. A common
approach is to use penalized splines: for each fj, add a penalty term
to the loss function that penalizes roughness, which we’ll denote as
J(fj). The optimization problem thus becomes

min
{fj}

N∑
t=1

(
RM

t − α−
d∑

j=1

fj(Xt,j)

)2

+
d∑

j=1

λjJ(fj)

where λj ≥ 0 are smoothing parameters to control the roughness of
fj. Selecting these values can be done using cross-validation.

Limitations and Practical Considerations

The first limitation of GAMs is that they assume that there are no
interactions amongst the factors. A GAM can include interaction
terms, but this increases complexity and the required data size. In
practice, interaction terms should be manually included in variables
that are plausible.

GAMs also require a generous amount of data as they use up
degrees of freedom for each smooth term. Having too many predictors
or allowing the fj’s to be too flexible can lead to overfitting.
Additionally, choosing how smooth each fj should be is not trivial,
adding another layer of complexity in comparison to standard linear
regression. Fitting a GAM is much more computationally expensive
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than fitting a linear regression.
Finally, in the context of Chinese market linkages with the U.S.

economy, it is important to note that linkages are heavily impacted by
trade policies. As such, the stationary assumption should be taken
into account when choosing how far back to include data from. One
way to tackle this is to include indicator variables for different time
periods. Additionally, macroeconomic factors and returns might have
inherent lags; we can handle this by including lagged predicted as
separate inputs.

2.1.3 Nonparametric Kernel Regression

The previous models introduced assume some parametric relationship
between market return and the factors used. The linearity assumption
may be too restrictive in practice. To capture complexities in the
data, we introduce a nonparametric regression model that does not
impose a predetermined functional form on the data.

Model Setup and Motivation

Similar to the previous sections, let RM
t represent the market return

at time t and let Xt be a vector of factors at time t. We are interested
in the conditional expectation of RM

t given Xt = x, which we’ll write
as m(x) = E[RM

t |Xt = x]. Unlike the previous models, there is no
assumption that the conditional expectation is linear in x. It is simply
assumed that the relationship can be expressed as

RM
t = m(Xt) + ϵt

where m is an unknown smooth function and ϵt is an error term with
mean zero. The goal is to estimate m(x) from the data in a
generalized way that can capture interactions among factors. This
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generality is the reason we cannot solve for a closed-form solution for
m. Instead, we can construct an estimator inspired by the k nearest
neighbors algorithm.

Deriving the Nadaraya-Watson Kernel Estimator

Drawing inspiration from the k-NN model, we can estimate
m(x) = E[RM

t |Xt = x] by averaging the RM
t values in our data with

factors Xt close to x. The idea here is that the true value of m(x)

should be close to the average of its surrounding neighbors.
Consider the following estimator, in which a simple rolling sample

mean for a small neighborhood around x:

m̂window(x) =

∑n
t=1 I{||Xt − x|| ≤ h}RM

t∑n
t=1 I{||Xt − x|| ≤ h}

where I is an indicator function and h > 0 is the radius of the
neighborhood. While this estimator is powerful, it is not typically
smooth. We can make it smooth by replacing the indicator function
with a kernel weight that decays with distance from x.

Let K(u) be a kernel function, a smooth, non-negative, and
symmetric function that gives higher values for u near 0 and satisfies∫
K(u) du = 1. Let the kernel weight for observation t at the target

point x be Kh(x−Xt), given by

Kh(u) =
1

hd
K
(u
h

)
where h is the neighborhood radius (also called the bandwidth) and
d = dim(Xt) is the number of factors. The kernel weight is large when
Xt is close to x since x−Xt

h
is near 0, implying that K

(
x−Xt

h

)
is large.
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Using these weights, we adjust our estimator to be:

m̂h(x) =

∑n
t=1 Kh(x−Xt)R

M
t∑n

t=1 Kh(x−Xt)

This estimator was proposed by Nadaraya and Watson independently
in 1964 and is called the Nadaraya-Watson kernel regression
estimator.[20, 21]

Note that this does not assume a specific kernel function. Studies
have also shown that the choice of the kernel is less critical than the
choice of the bandwidth.

Bandwidth Selection and the Bias-Variance Trade-Off

The choice of the bandwidth is critical in kernel regression. A small h
only uses observations very close to x, which reduces bias and
increases the variance of the estimates. A large h gives a smoother,
low-variance estimate but can blend points that may have different
true means together.

This is an example of the classic bias-variance trade-off. We want
to capture local detail with a smaller h, but we don’t want it to be so
small that m̂h(x) becomes volatile. Cross-validation can be helpful in
practice for selecting the bandwidth, typically using the MSE as the
objective function.

Assumptions and Theoretical Properties

The first assumption is that the data samples are expected to be
independent across t. This assumption justifies using the empirical
local average to estimate the conditional expectation. Typically,
identical distributions are also assumed in theory, but in practice a
weaker assumption of stationary distributions has been shown to
suffice.
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The true conditional mean function m(x) is assumed to be smooth
in x. This ensures that observations near x do have similar expected
values of RM

t , making local averaging effective.
The kernel is typically assumed to be symmetric about 0 and has a

finite variance. The Gaussian and the Epanechnikov kernels satisfy
these conditions and are common choices for a kernel. The bandwidth
sequence is typically chosen such that h shrinks as the number of data
samples increases.

Under these conditions, the Nadaraya-Watson estimator is
consistent for m(x).[20, 21] More formally, if hn → 0 as n → ∞,
mhn(x) → m(x) in probability for each fixed point x where fX(x) > 0.

Application to Market Return Prediction with Macroe-
conomic Factors

We can apply this model to the market by letting RM
t represent the

return of a market index in month t and Xt be a vector of
macroeconomic indicators observed at month t. By using a kernel
regression, we can estimate the impact of specific factors without
assuming linearity in the underlying relationship.

The advantages of flexibility and minimal assumptions come at a
cost of interpretability and scalability. Unlike a traditional linear
model, which returns a set of easily-interpretable coefficients, kernel
regression returns the estimated m̂(x), which is harder to interpret
without visualizations or further examination into other factors.
Kernel regression also struggles in cases where the dimension of x is
large or in cases with limited data. In practice, this limits kernel
regression to a small number of key factors or requires some form of
dimension reduction, which can lose more interpretability. Kernel
regression is also far more computationally expensive than OLS
regression, especially for larger values of n.
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2.2 Statistical Modeling Frameworks

This section covers the empirical frameworks that this thesis considers
employing to analyzing the impact of the U.S. and Chinese economies
on their markets. These frameworks build on the statistical models
previously discussed.

2.2.1 Linear Regression with Regularization

In practice, linear regression can be improved by adding regularization
terms to the loss function. Techniques like Ridge Regression and
Lasso Regression can help with multicollinearity and overfitting.

The main idea is to start with the same OLS objective and add a
penalty term on the coefficients, making the minimizing function

w⃗∗ = argmin
w⃗

E
[(

RM
t − w⃗⊤R⃗t

)2]
+ λP (w⃗)

where P (w⃗) is a penalty function with λ ≥ 0 representing its strength.
In Ridge regression, P (w⃗) =

∑d
j=1 w

2
j . The penalty shrinks all

coefficients towards zero. In Lasso regression, P (w⃗) =
∑d

j=1 |wj|. The
penalty here can set some coefficients to zero and can act as some
form of variable selection. Empirically, Lasso can be unstable in
highly correlated features.

In Python, Lasso and Ridge regression can be implemented using
scikit-learn. After standardizing the factors, we can choose the
optimal λ using cross-validation using RidgeCV or LassoCV.

2.2.2 Sparse Additive Models

Standard GAMs are prone to overfitting when many factors are
irrelevant, especially as the dimensionality of the data increases.
Sparse Additive Models (SpAM) impose a sparsity constraint on
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GAMs so that only a subset of the fj functions have non-zero value,
analogous to the effect of Lasso regularization on a linear regression.

It applies a Lasso penalty to each fj. If we represent each fj as a
basis, we can apply a group lasso penalty to highlight the most
important fj factors. SpAMs have been found to be very effective in
this method, correctly identifying the relevant components with high
probability given enough data.

While there isn’t a specific library for SpAMs in Library, one could
use pyGAM to create a basis expansion for each feature and then
apply the Lasso penalty across the groups of basis coefficients for each
feature.

2.2.3 Kernel Regression

In the theoretical modeling section, we introduced kernel regression
and the Nadaraya-Watson estimator as a method for accounting for
nonlinearities.

Using the statsmodels Python package, we can use the KernelReg
class, which fits the model using the Nadaraya-Watson estimator. We
can also use scikit-learn’s kernel-based algorithms, which include the
kernel ridge regression, Gaussian process regressors, and support
vector regressors.

An important choice in kernel regression is the selection of the
bandwidth. In order to ensure comparability in distance
measurements across factors, it’s important to first standardize the
data. After that, cross-validation can be used to choose a bandwidth.

2.2.4 Empirical Considerations

There are several challenges to be aware of when moving from theory
to empirical implementation. Although they vary in importance,
testing for the impact of the challenges and accounting for them is
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central towards achieving an accurate model.

Non-Stationarity

The models above all assume stationarity in the underlying
distributions. This is not a natural assumption in financial data,
which naturally have cycles of expansion and contraction. Beyond
that, changes in regimes and global policy can impact the underlying
distributions of economies.

Non-stationarity can be handle with data transformations.
Incorporating time indicators can also help adjust for shifts in the
data, potentially marked by regime changes.

Factor Relevance and Spanning

When analyzing economic conditions, the data is naturally limited as
it is typically measured monthly. With many potential factors
impacting the market, identifying significant factors is important for
applying these models. This is particularly important in models that
require numerous data, like kernel regression. Multicollinearity among
the factors can also be harmful, leading to unstable and unreliable
coefficient estimates.

Economic factors, especially when reduced to smaller set, likely will
not fully capture the risks in the market. Thus, factor selection is
critical to the success of the models. Selecting too many factors makes
some models impossible to estimate accurately, but not selecting
enough significant factors can prevent the degree to which the models
can accurately represent the market.

The data used in this thesis has 13 themes and over 150 factors. To
combat this issue, I will use the themes data in the kernel regression
as they typically aggregate several similar factors’ information.
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3
Data

3.1 Data Description

The data used in this thesis can be split into two portions: the
economic data and the market returns.

3.1.1 Data Origin

The economic data is retrieved from the Jensen, Kelly, and Pedersen
dataset. The dataset includes a comprehensive collection of equity
market factors described in their paper ”Is There a Replication Crisis
in Finance?” (2023). The data is publicly available with extensive
documentation of factor definitions and construction methods. The
JKP factors are constructed using data from the Center for Research
in Security Prices (CRSP), Compustat, I/B/E/S, and OptionMetrics.
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The data is available for both the U.S. economy and the Chinese
economy.

The market data is retrieved from Finaeon, a platform that provides
financial and economic data, including over 307,000 global data series
spanning markets from 1000 AD to the present. They compile their
data from a variety of historical and current sources, including
financial reports, news periodicals, sectoral journals, and other
publications, all of which are meticulously transcribed and verified.

3.1.2 Factor Data

Data is provided on 153 unique factors representing the U.S. and
Chinese economies, measured at both a daily and monthly
granularity. The factors are value-weighted by a method called capped
market capitalization, meaning that the impact of a company on the
measure is weighted by its size, winsorized at the 80th percentile level.
Using market capitalization as a weight is standard in the market as
it better reflects investable opportunities and is less volatile than
equally-weighted values. The capping methodology is implemented by
JKP to cap the impact a singular company can have on the measure
to 80%.

The factors can be split into the following categories: enterprise
value, earnings momentum, earnings quality, sales growth, volatility
measures, liquidity, market size, and technical factors like Amihud
illiquidity and maximum returns.

The U.S. monthly data has 1,188 rows and covers January 1926 to
December 2024; of those, 638 include measurements of all 153 factors.
The U.S. daily data has 26,051 rows and covers January 2, 1926 to
December 31, 2024; of those, 13,407 have measures of all 153 factors.

The Chinese monthly data has 348 rows and covers November 1993
to December 2024; of those, 112 include measurements of all 153
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factors. The Chinese daily data has 7,109 rows and covers November
1, 1993 to December 31, 2024; of those, 2,266 have measures of all 153
factors.

3.1.3 Themes Data

The U.S. and Chinese factor data are provided as 13 themes, each
aggregating multiple factors; as such, the theme data is also
value-weighted by market capitalization. The theme data is available
at a daily and monthly granularity. The themes are: accruals, debt
issuance, investment, low leverage, low risk, momentum, profit
growth, profitability, quality, seasonality, short term reversal, size, and
value. Descriptions for each of these themes are provided below.

Accruals Measures the difference between a company’s reported
earnings and its cash flows. Lower values signal a higher quality
of sustainable earnings.

Debt Issuance Tracks changes in corporate debt.

Investment Measures corporate spending on assets, capital
expenditures, and acquisitions.

Low Leverage Measures absolute debt levels.

Low Risk Captures stocks with lower risk measures, often
represented by volatility.

Momentum Measures return persistence and trend-following
behavior.

Profit Growth Measures change in profit margins and earnings.

Profitability Measures levels of corporate profitability.

26



Quality Combines measures of financial stability, earnings
consistency, governance, and operational efficiency.

Seasonality Captures recurring calendar-based patterns in market
returns.

Short Term Reversal Measures the tendency of stocks to reverse
their previous 1-4 week performance.

Size Measures market capitalization, allowing to distinguish between
company sizes.

Value Identifies stocks trading at lower prices relative to their values
of fundamental measures (book value, earnings, cash flows, or
sales).

The U.S. monthly data has 1,188 rows and covers January 1926 to
December 2024; of those, 878 include measurements of all 13 themes.
The U.S. daily data has 26,051 rows and covers January 2, 1926 to
December 31, 2024; of those, 18,443 have measures of all 13 themes.

The Chinese monthly data has 348 rows and covers November 1993
to December 2024; of those, 336 include measurements of all 13
themes. The Chinese daily data has 7,109 rows and covers November
1, 1993 to December 31, 2024; of those, 6,787 have measures of all 13
themes.

3.1.4 Market Returns

The Wilshire 5000 Total Market Index and the Shanghai SE
Composite were chosen to represent the equity markets in the U.S.
and China, respectively, because of their broad coverage of the
markets. The Wilshire 5000 is a market-capitalization-weighted index
of the market value of all American stocks actively traded in the
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United States. The Shanghai SE Composite is an index of all stocks
traded at the Shanghai Stock Exchange.

The data is available at the daily and monthly levels. The Wilshire
5000 data dates back to 1970 and is available until May, 2024, and the
Shanghai Composite data dates back to its opening in 1990 and is
available until December, 2024.

The close values at the end of the market day are used. The returns
are also given as percent changes from the previous period, either
daily or monthly. The Shanghai Composite is given in U.S. dollars.

3.2 Exploratory Data Analysis

3.2.1 Data Cleaning

The data was provided in high quality, as JKP cleaned the data
before publishing it. The market data provided by Finaeon was also
of great quality, which is expected as they are providers of data for
financial researchers and professionals. Most of the data was provided
in a stacked format. After pivoting the datasets, I analyzed it for
missingness and temporal coverage. While the missingness and
temporal coverage are explored for the entire dataset, the trends are
explored for 2001 to 2024, the data available after China joined the
World Trade Organization.

3.2.2 Data Trends

Market Trends

Data trends are explored on a monthly granularity to reduce the
impact of noise. Looking at the market returns for the U.S. and
China, shown in Figure 3.2.1, we see that the Chinese market is much
more volatile than the U.S. market.
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Figure 3.2.1: Monthly Market Returns

Even after calculating the 6-month moving average, displayed in
Figure 3.2.2, the volatilities are clearly different. Note that the
greatest differences appear around the 2005-2008 period, the
2014-2016 period, and the 2018-2019 period.

Figure 3.2.2: Monthly Market Returns with 6-Month Moving Averages

During the 2005-2008 period, China’s economy experienced rapid
growth and market liberalization. This explains the period of higher
returns that was not exhibited in the U.S. market. The 2008-2010
period had similar impacts on the U.S. and China as financial crises
led to sharp market corrections in both markets. In the U.S., the
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markets were crashing because of the bursting of the housing bubble
and the failures of the financial sector. In China, investors fear
surrounding the slowing exports and accumulated debt led to a
market correction.

The 2014-2016 period had large increases and decreases in returns
in China, while the U.S. economy remained relatively stable. The
trends in China were mainly due to the retail bubble and its burst.

In 2018-2019, the Chinese market corrected after growing too
quickly.

Economic Trends

Economic trends are explored at the monthly level once again to
avoid volatility and noise. Themes are visualized for greater
explainability as there are 13 themes and 153 factors.

The 6-month moving averages of the 13 themes are plotted in
Figure 3.2.3 from 2001 to 2024 to reduce noisy peaks and increase
visibility in trends. We notice, consistent with the market data, that
the Chinese economy is less stable than the U.S. economy, with
themes generally being more volatile.

We do also notice general trends between the market returns and
the economic themes within countries as periods with high volatility
in markets typically align with high volatility in economic themes.

3.2.3 Correlations and Collinearity

Themes correlations are analyzed using a correlation heatmap, shown
in Figure 3.2.4 for the U.S. and in Figure 3.2.5 for China. Note that
there appear to be several strong correlations in the U.S. and Chinese
data, but the correlations are not necessarily the same for both
countries. Some of the strongest correlations in the U.S. market are
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Figure 3.2.3: Monthly Theme 6-Month Moving Averages
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uncorrelated in the Chinese market, and vice versa. This implies that
the markets have structural differences, and that the themes
important for market signals in the U.S. might not be important
signals for the Chinese market.

Figure 3.2.4: U.S. Monthly Themes Correlation Heatmap

Correlation networks were also analyzed in the U.S. and China
Themes and Factors datasets at a daily granularity. The themes
network in the U.S., shown in Figure B.0.5, reveals only correlations
(r ≥ 0.70) among the low leverage, value, and investment themes.
The themes network in China, shown in Figure B.0.6, reveals a similar
trend in which value and low leverage are correlated (r ≥ 0.70). It
also shows that, in China, size is correlated to profitability,
profitability is correlated to quality, and quality is correlated to
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Figure 3.2.5: China Monthly Themes Correlation Heatmap
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investment. Figure B.0.7 and Figure B.0.8 show the factor correlation
networks for the U.S. and China, respectively.

3.2.4 Missingness

Factor Data

While some U.S. factors have data points as early as 1926, they only
comprise 29 of the 153 factors. Data is available for 40 factors starting
in 1930, 49 factors starting in 1950, 136 factors starting in 1960, and
all 153 factors are available after 1972. These trends for missing
values in the daily and monthly factors for U.S. data are shown in the
top subplot in Figure 3.2.6.

For the Chinese factors, we see a similar decreasing trend, in which
more data is available for more recent years. However, the Chinese
data availability is much more volatile. Note that the data is much
more stable post 2001, the year in which China joined the WTO. This
is typically the earliest that the literature begins considering China a
liberalized market, and is the earliest data that will be included in our
models. These trends for missing values in the daily and monthly
factors for China data are shown in the bottom subplot in
Figure 3.2.6.

Themes Data

The U.S. themes data is much more available, with no missingness
after 1960 in either the daily data or the monthly data. These are
shown in the top subplot in Figure 3.2.7.

The Chinese daily themes are still volatile before 2002 in terms of
missingness, but the monthly data is complete from 1999 onward.
These trends are shown in the bottom subplot in Figure 3.2.7.
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Figure 3.2.6: Factors Missing Values Over Time
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Figure 3.2.7: Themes Missing Values Over Time
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A few trends come out in the missingness of the data. First, data
missingness is generally decreasing over time. Second, themes data is
more complete than the factors, with no missingness after 1960 for the
U.S. and 2002 for China. Third, data with monthly granularity tends
to have less missingness than daily data with daily granularity.

Handling Missingness

The monthly themes data does not exhibit any missingness in the
data. The daily themes, on the other hand, have some sporadic
missingness in the data. Figure 3.2.8 shows the missingness observed
in the daily themes for the 40 themes with the most missingness. The
missingness is sporadic, and will be imputed using linear imputation.

Figure 3.2.8: Missing Themes Heatmap (Top 40 Themes, Daily Data)

The factor data, on the other hand, exhibits much more severe
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missingness. Figure 3.2.9 shows the 40 factors with the most
missingness on a daily factor. The missingness can be decomposed
into two types: (1) sporadic missingness similar to that observed with
the daily themes data, which can be linearly imputed, and (2) large
chunks of missing data for some of the Chinese factors. These factors,
listed below and shown in Figure 3.2.9, have too much missing data
to be considered, often not having any data for the first 4-13 years of
the data. In order to avoid bias, I’ve excluded the factors from both
countries’ data.

The factors I’ve excluded from the data are: rd5_at,
seas_16_20an, seas_16_20na, rd_me, rd_sale, emp_gr1,
sale_emp_gr1, seas_11_15an, seas_11_15na, seas_6_10na,
seas_6_10an, iskew_hxz4_21d, ivol_hxz4_21d, ocfq_saleq_std,
saleq_su, eqnetis_at, saleq_gr1, ni_inc8q, capex_abn, capx_gr3,
resff3_6_1, resff3_12_1, niq_su.

Figure B.0.4 shows the missingness on the monthly level, which is
similar to the daily plot in Figure 3.2.9 but without the dates where
data is missing for all factors. The same factors are excluded from the
monthly data.

Market Returns Data

While no missingness was initially exhibited in the data at either the
daily or the monthly granularity, further analyses showed some gaps
in temporal coverage at the daily granularity. Figure 3.2.10 shows the
gaps. Gaps were calculated as periods of more than two business days
without data for the daily level and any month without data for the
monthly level. Gaps do not account for federal holidays or other
yearly missingness in the data. This is not central to the analyses, so
it was not explored in more depth. The largest gaps are shown, with
23 business days in the U.S. daily data and 14 business days in the

38



Figure 3.2.9: Missing Factors Heatmap (Top 40 Factors, Daily Data)

Chinese daily data.
Additionally, there were some days where the markets were closed

but the factor and theme data were available. I chose to omit these
from the data since the observed outcome is not measured.

3.2.5 Consistency and Outlier Analysis

Market Outliers

I first merged the data to create four Pandas dataframes: (1) Factors
with Market Returns for the U.S. and China at a daily granularity,
(2) Factors with Market Returns for the U.S. and China at a monthly
granularity, (3) Themes with Market Returns for the U.S. and China
at a daily granularity, and (4) Themes with Market Returns for the
U.S. and China at a monthly granularity.
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Figure 3.2.10: Market Data Time Coverage Analysis
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Using the IQR method, 6 outliers were detected in the U.S. market
returns and 11 outliers were detected in the Chinese market returns.
Figure 3.2.11 shows the dates that the outliers appeared. Of the 17
total outliers, 10 occurred from 2007 to 2010. Three occurred in the
2014-2016 time range, in which the Chinese market was volatile as a
result of the retail bubble. Three occurred in the 2020-2021 range in
the U.S. market, displaying volatility around the widespread fear
caused by the COVID-19 pandemic.

Figure 3.2.11: Monthly Market Returns with Potential Outliers

Economic Outliers

Theme values in the U.S. and China were also analyzed for outliers
using the IQR method. Figure 3.2.12 shows box plots of the themes
for each country, measured at the monthly granularity. The plot
reveals some similarities in theme variance across the countries, but it
also reveals great differences in others. Accruals Debt Issuance, Profit
Growth, and Seasonality were among the most compact Themes for
both countries. Momentum was one of the most varying themes, with
severe outliers in both countries. Size was the most varied data in the
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Chinese economy, though much more stable in the U.S. economy.
Most other factors were generally more varied in the Chinese economy
than the U.S. economy.

Figure 3.2.12: Box Plots of U.S. and China Themes

Theme and factor volatilities were calculated as 6-month rolling
standard deviations for all columns, either all themes or all factors,
for each country and then averaged. Examining the results, we see
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similar trends over time for themes and factors. Theme volatilities are
placed in the appendix (see Figure B.0.1). Figure 3.2.13 shows the
factor volatilities over time for the U.S. and Chinese economies. It
confirms our suspicions of the Chinese economy generally having a
greater volatility than the U.S. economy, and it shows periods of
divergence and near-convergence of the volatilities. Most recently, the
volatilities have generally been the same since 2020.

Figure 3.2.13: Factor Volatility (6-Month Rolling Standard Deviation)

I also examined the number of outliers over time in each country for
factors and months. The results were consistent with the volatilities
above, with areas with greater volatility having more outliers. The
plot of the number of factor outliers over time is shown in
Figure B.0.2, and the plot of the number of theme outliers over time
is shown in Figure B.0.3. We note that it is very rare for factors and
themes to have no outliers at a given time point.

When deciding what to do with outliers, we have a few options. We
can retain outliers, using the data as it appears. These cases do not
appear to be miscalculations or as a result of human error; they align
with historically significant scenarios. Keeping the data can impact
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the result of the models, especially models that use MSE as an
objective function. Significant scenarios in either country might
significantly impact the regression. As a result, one potential method
would be to fit a model on the entire 2001 to 2024 region, and then
again post-2010 for more recent events; still, the models would likely
be influenced by the 2015 bubble in the Chinese market.

We can exclude the outliers, following some criteria for when to
include or exclude a time period. However, these outliers are not
errors and are not irrelevant to the relationship between the markets.
Excluding outliers or idiosyncratic scenarios biases the models by
omitting important market scenarios.

We can winsorize outliers to reduce their impact. We might set any
data above the 99th percentile to be the same value as the 99th
percentile (and similarly for the 1st percentile). This complicates the
interpretation of the effect size and does not exclude the impact of the
outliers in the models.

As a result, I’ve chosen to winsorize the all columns in the data at
the 0.05% and 99.95% levels. In the monthly data, this will impact
1.430% of the cells in the factors dataset, 1.429% of the cells in the
themes dataset, and 1.429% of the cells in the returns dataset. For
the daily data, it will impact 1.021% of the cells in the factors
dataset, 1.021% of the cells in the themes dataset, and 1.21% of the
cells in the returns dataset. In total,

This choice was made in order to limit the impact of extreme values
in the data. It’s important to note that it still preserves the
information from the outliers, but it caps the amount of effect a single
point can have. The literature also shows that this does not fully
eliminate outlier bias, showing that the signals of the winsorized
outliers remain.
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3.2.6 Standardizing the Data

Applying the Shapiro test for normality at an α = 0.05 level shows
that none of the columns in the daily data is normal or standardized.
Of the monthly datasets, no columns are standardized, but 34 of the
262 factor columns are normal and 4 of the 28 theme columns are
normal. I checked for standardization in the data by checking if the
mean of a column’s data µ satisfies |µ| ≤ 0.05 and its standard
deviation σ satisfies 0.95 ≤ σ ≤ 1.05.

The themes and factors are standardized as follows using sklearn’s
StandardScaler. Suppose that xi,j represents the value of row i in
column j. Let µj and σj be the mean and standard deviation of the
data in column j. The standardized value of xi,j, denoted as x

(std)
i,j , is

given by x
(std)
i,j =

xi,j−µj

σj
.

Note that, as outlined in the statistical formulation of the models,
the factors and themes are not assumed to be normally distributed.
As such, standardizing the data is enough.

3.2.7 Stationarity and Structural Breaks

Testing for Stationarity and Structural Breaks

As described in the statistical formulation section, stationarity is an
important assumption of the models Two tests are used to assess
stationarity: the Augmented Dickey-Fuller (ADF) Test and the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test. I used both at the
α = 0.05 level.

The ADF test has the null hypothesis that the time series is
non-stationary, and an alternative hypothesis that it is. It can be
implemented using adfuller() from statsmodels in Python. The series
is said to be stationary when the null is rejected when the p-value is
less than 0.05.

The KPSS test has the null hypothesis that the time series is
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stationary, and an alternative hypothesis that it is not. It can be
implemented using kpss() from statsmodels in Python. The series is
said to be stationary when we fail to reject the null hypothesis, when
the p-value is greater than 0.05.

In order to detect structural breaks in the data, the Pruned Exact
Linear Time (PELT) algorithm is also used. It detects multiple
change points in time series data, and it can be implemented using
the ruptures package. It efficiently searches for optimal segmentation
using the squared error cost function.

The time series were plotted with vertical lines marking detected
break points.

I also used the CUSUM (Cumulative Sum) test for breaks in the
US-China relationship, which looked for structural changes in
regression relationships between the market returns.

Testing Results

In the monthly factors dataset, the ADF test concluded that 261 of
the 262 columns were stationary and the KPSS test concluded that
240 of the 262 columns were stationary. They both agreed on 239
columns being stationary. Using the CUSUM test, a break was
detected in the relationship, with p < 0.0001.

In the monthly themes dataset, the ADF test concluded that 27 of
the 28 columns were stationary and the KPSS test concluded that 26
of the 28 columns were stationary. They both agreed on 25 columns
being stationary. Using the CUSUM test, a break was detected in the
relationship, with p = 0.0002.

In the daily factors dataset, the ADF test concluded that all 262
columns were stationary and the KPSS test concluded that 197 of the
262 columns were stationary. Using the CUSUM test, a break was
detected in the relationship, with p < 0.0001.
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In the daily themes dataset, the ADF test concluded that all 28
columns were stationary and the KPSS test concluded that 22 of the
28 columns were stationary. Using the CUSUM test, a break was
detected in the relationship, with p < 0.0001.

Structural breaks were analyzed in the factors and themes as well,
at both the daily and monthly granularities. Two common trends
amongst those with structural breaks were in the middle of 2002 and
in 2022.

Making the Data Stationary

While every column in the data was described as stationary by at
least one of the tests, I decided to only count data as stationary if
both models agree on it. As such, there were 97 columns that needed
to be changed in some way.

I wrote a function that attempted a few transformations, checking
for stationarity as it applied different ones. First, it attempts
differencing, in which observations are subtracted from their previous
values. This is generally great for series with upward or downward
trends. If that doesn’t work, the natural logarithm is used instead;
this accounts for exponential growth in the data. The square root
transformation is attempted next. Lastly, the Box-Cox and
Yeo-Johnson transformations are attempted, which normalize the
data. Lastly, the function standardizes any data it is able to make
stationary.

In the monthly factors data, 23 columns were identified as
non-stationary by either test. Of those, 21 were transformed into
stationary columns, 20 by differencing and 1 using the Yeo-Johnson
transformation. The two columns that didn’t achieve stationarity by
any method were usa_factors_monthly_aliq_mat and
chn_factors_monthly_age.
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In the daily factors data, 65 columns were identified as
non-stationary by either test. Of those, 61 were transformed into
stationary columns, 59 by differencing and 2 using the Yeo-Johnson
transformation. The four columns that didn’t achieve stationarity by
any method were usa_factors_daily_lnoa_gr1a,
chn_factors_daily_ocf_at, usa_factors_daily_fnl_gr1a, and
usa_factors_daily_nncoa_gr1a.

In the monthly theme data, 3 columns were identified as
non-stationary by either test. All three were transformed into
stationary columns by differencing. In the daily theme data, 6
columns were identified as non-stationary by either test. All six were
transformed into stationary columns by differencing.

The Cumulative Sum Test on Market Returns

The cumulative sum (CUSUM) test is a technique used to detect
structural breaks or regime shifts in financial data. It looks at the
cumulative sum of deviations from a target value. When it exceeds
the target value, it signals a change in the underlying process.

The U.S. results, shown in Figure 3.2.14, reveal a few potential
structural breaks: 2001, 2007-2008, and 2011-2013. The China results,
shown in Figure 3.2.15, reveal a few other potential structural breaks:
2001, 2007-2009, and 2015. These results align with the historical
contexts presented earlier in the thesis.

3.2.8 Limitations in the Data

There are a few considerations we must take when analyzing the data
with our models. First, stationarity was resolved in some factors, but
those will likely pose an issue with interpretation. Second, some
factors were removed due to data missingness and a lack of
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Figure 3.2.14: CUSUM Test on U.S. Market Returns

Figure 3.2.15: CUSUM Test on Chinese Market Returns
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stationarity, even after attempting transformations. Lastly, there are
some issues with structural breaks in the markets, typically
representative of shifts in regimes or policy. With the lastest
structural break being a decade ago, we can still analyze the
integration from 2016-2024.
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4
Fitting the Models

4.1 Linear Regression

Linear regressions were fit, with and without regularization. Of the
192 models fit, 48 models did not use regularization and the other 144
were split amongst ridge, lasso, and elastic net. The models were
combinations of granularity (daily or monthly), type of predictors
(factors or themes), data time frame (2001-2024 or 2016-2024),
market returns being predicted (U.S. or China), origin of the
predictors used (U.S. data, China data, or both).

As suggested by the literature, the R2 value is computed as a
measure of explainability. I’ve also computed the Adjusted-R2 value
as an extra measure that considers the number of variables used.
Adjusted-R2 is used to penalize using more predictors, which can help
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in finding models that were most efficient.

4.1.1 Assumptions

The main assumptions on the data in a regression are the lack of
multicollinearity, homoskedasticity, and normality and independence
in the errors.

The data has so far been standardized. Testing for multicollinearity
revealed one near-perfect correlation in the daily factors datasets and
in the monthly factors dataset, and no near-perfect collinearity in the
themes datasets. The correlation pair for both was turnover_126d
and zero_trades_126d, both of which were removed from the datasets
for the U.S. and China.

For each of the models trained, residual and Q-Q plots are assessed.
Trends are described below.

4.1.2 Without Regularization

The linear regression without regularization results are shown in
Table A.0.1 and Table A.0.2, separated by the market being
replicated. Note that six models returned an R2 of 1 and an
Adjusted-R2 of 0. Those cases resulted from models in which the
number of rows in the data was lower than the number of predictors.
This was the case when estimating 2016-2024 monthly data using
facts; recall that there are about 140 factors remaining in the data for
each country and there are about 114 months in the analyzed time
frame. The Adjusted-R2 of 0 was a safeguard in my code to prevent
an erroneous calculation.

Analyzing the models that predicted U.S. returns using the daily
data, we note that there was no scenario in which using Chinese
economic data alone had an R2 > 0.10. Using economic data from
both countries also produced negligible effects on the R2 value, as
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compared to using only U.S. economic data. Analyzing the models
that predicted Chinese returns using the daily data, we note that the
best performing model using only U.S. economic data had R2 = 0.19.
Using U.S. economic data along with Chinese economic data seems to
have bigger impacts; in the factors model on 2016-2024 data, it
increased the R2 from 0.5948 to 0.6728 (see Table 4.1.1).

Table 4.1.1: Chinese Returns Regression using U.S. and Chinese Factors

Time Period Granularity Predictors Adjusted R2 R2

2016–2024 Daily usa_factors 0.0815 0.1910
2016–2024 Daily chn_factors 0.5599 0.5948
2016–2024 Daily both_factors 0.5918 0.6728

The fitted models typically had four types of Q-Q and residual
plots. In the first case, the residual plots (see Figure B.0.9 for an
example) seemed normally distributed and the Q-Q plots (see
Figure B.0.10) displayed some deviations towards the extremes in the
data.

In the second case, the residual plots (see Figure 4.1.1 for an
example) seemed Normally distributed, but there were clear linear
boundaries in the residuals, and the Q-Q plot (see Figure B.0.11)
displayed some greater deviations towards the ends of the data. The
residual plots’ trends suggest that there might be an underlying
constraint or structure in the data that isn’t fully captured by the
model, potentially as a result of a transformation.

In the third case, the residual plots (see Figure 4.1.2 for an
example) showed clear trends in the data and the Q-Q plot (see
Figure B.0.12) only showed issues on the most extreme data points.
The residual plots’ trends suggest that the linear assumption in the
data might be very limiting, and that the underlying data might not
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Figure 4.1.1: Case 2: Residual Plot

follow the necessary structure.

Figure 4.1.2: Case 3: Residual Plot

In the fourth case, the residual plots (see Figure 4.1.3 for an
example) showed signs of increasing variance over time and the Q-Q
plot (see Figure B.0.13) displayed some deviations towards the ends of
the data. The residual plots’ trends suggest heteroscedasticity in the
data, which can impact the reliability of the model. The Q-Q plot
suggests that this is mainly at the extreme ends of the data.
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Figure 4.1.3: Case 4: Residual Plot

These plots suggest that the linear regressions are not capturing the
full relationship between the data. Before moving onto models that do
not assume linearity, let’s assess regressions with regularization.

4.1.3 With Regularization

Using sklearn, I fit a total of 144 models using either ridge, lasso, or
elastic net regularization. The standardscaler was used once again to
ensure that everything is standardized; note that while this process
might be redundant, it does not impact the data. Grid search
cross-validation is used to tune the hyperparameters for each
regression based on minimizing the MSE. The TimeSeriesSplit
method was used to account for the temporal structure of the data,
ensuring that the training and validation data split is somewhat
uniform across time.

The best model of the three regularization methods was used. Of
the 48 models, Ridge was the best model by R2 for 45; Lasso was the
best for two and Elastic Net was the best for one. Similar to the
previous regression section, the results are split between those
predicting U.S. returns (see Table A.0.3) and those predicting Chinese
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returns (see Table A.0.4).
We note no significant gain was added to the R2 value when

predicting U.S. returns when Chinese predictors were also included.
When Chinese predictors were used to predict U.S. returns, they had
at most an R2 of 0.1341; this was also a scenario in which adding the
Chinese predictors to the U.S. predictors actually decreased the R2 of
the general model.

Table 4.1.2: Best Regularized Model for U.S. Returns

Time Period Granularity Predictors Technique Adjusted R2 R2

2001–2024 Daily both_factors Ridge 0.7385 0.7510
2001–2024 Daily chn_factors Ridge 0.0036 0.0272
2001–2024 Daily usa_factors Ridge 0.7378 0.7441

We see similar trends in the Chinese market regressions, in which
the highest R2 using only U.S. predictors was 0.2210. This was also a
scenario in which adding the U.S. predictors to the Chinese predictors
decreased the R2 of the model. Generally, we also note lower R2

values in the models than in those predicting U.S. returns.

Table 4.1.3: Best Regularized Model for Chinese Returns

Time Period Granularity Predictors Technique Adjusted R2 R2

2016–2024 Daily both_factors Lasso 0.4712 0.5761
2016–2024 Daily chn_factors Ridge 0.5162 0.5545
2016–2024 Daily usa_factors Ridge -0.0105 0.1100

A few trends were exhibited in the regularized models. There were
trends similar to Case 1 from above, in which the residual plot seemed
scattered with normality holding for most of the data, tapering off
towards the ends of the data. There were many cases similar to Case
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2, in which the residual plot had some linear boundaries.
Interestingly, those were sometimes accompanied with far worse Q-Q
plots (see Figure 4.1.4)) in which most of the data was not normal
and the outliers were very extreme. This suggests that the residuals
are far from a normal distribution, showing violations in the
assumption of a normally distributed error term.

Figure 4.1.4: Curved Q-Q Plot

One model’s residual plot exhibited linear constraints from all four
edges, forming an outlining square (see Figure 4.1.5)). This was
associated with curved Q-Q plots that generally followed the
theoretical quantiles (see Figure B.0.16).

These plots motivate the next attempts with Sparse Additive
Models (SpAMs), which do not assume a linear relationship between
the predictors and the returns. Note that it does assume an additive
effect, not accounting for interactions between the themes.
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Figure 4.1.5: Square Outline in Residual Plot

4.2 Sparse Additive Models (SpAMs)

Using the pyGAM package, I ran 24 SpAMs on the theme data. Each
predictor is assigned a spline term with 10 splines. The additive
model is the sum of the spline terms. It is fitted using grid search to
find the optimal parameters.

Note that I decided to run the SpAMs on only the theme data as
one of the main advantage of a SpAM is to determine the marginal
relationship between a predictor and the outcome variables. The
factors are too granular to provide a strong economic interpretation
unless there is a specific set of factors being investigated.

The R2 and Adjusted-R2 measures for the SpAM models for U.S.
market returns are shown in Table 4.2.1. We note that the Chinese
themes alone were able to explain at most 6.33% of the variation in
the U.S. market returns, yet again hinting at a lack of signaling from
the Chinese to U.S. markets. We note that the model fit on 2016-2024
data using both themes yielded an R2 of 0.9999; while SpAM does
integrate some form of regularization, this is likely a case of
overfitting.

Observing some of the partial effects of the themes in the model
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Table 4.2.1: SpAM Regressions Predicting U.S. Market Returns

Time Period Granularity Predictors Adjusted R2 R2

2001–2024 Daily both_themes 0.5949 0.6032
2001–2024 Daily chn_themes 0.0078 0.0120
2001–2024 Daily usa_themes 0.5970 0.6022
2016–2024 Daily both_themes 0.5507 0.5687
2016–2024 Daily chn_themes 0.0123 0.0222
2016–2024 Daily usa_themes 0.5579 0.5714
2001–2024 Monthly both_themes 0.6140 0.6538
2001–2024 Monthly chn_themes 0.0100 0.0633
2001–2024 Monthly usa_themes 0.6127 0.6359
2016–2024 Monthly both_themes 0 0.9999
2016–2024 Monthly chn_themes 0.0196 0.0459
2016–2024 Monthly usa_themes 0.4725 0.5723

support our speculations of the model being overfit. This is frequently
detected by very wavy curves that do not follow economic intuition.
The marginal effect for Chinese theme for debt issuance, seen in
Figure 4.2.1, is very wavy in a way that does not match economic
intuition. You would expect that any relationship between Chinese
debt issuance to not be so wavy; according to this model, changing
debt issuance by -1.2, -0.3, 0.3, 0.8, and 1.4 all have the same
zero-effect.

The best model for U.S. market returns by R2 is thus the model
trained on 2001 to 2024 using U.S. and Chinese themes, with
R2 = 0.6538. Most of the partial dependence plots of the themes
follow a linear structure, with the exception of Chinese Value and
U.S. Momentum.

Chinese value (see Figure 4.2.2) is shown to have a strongly curved
decreasing relationship, in which negative changes in Chinese Value
estimates are estimated to be related to raises in the U.S. market.
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Figure 4.2.1: Partial Dependence of Chinese Debt Issuance on Overfit SpAM
Model

Recall that Value measures how many stocks are trading at lower
prices relative to their values of fundamental measures. As stocks in
China become overvalued, it makes sense that investors might shift
their portfolios to U.S. stocks. On the other hand, increases in
Chinese Value are related to diminishing effects on the U.S. market;
this makes sense when you consider how much easier it has
historically been to invest in the U.S. market as a foreigner than in
the Chinese market. Still, we see a negative impact when Chinese
value is increased, which aligns with economic intuition.

U.S. Momentum is expected to have a positive relationship with
U.S. market returns. The model does not show such a relationship
(see Figure 4.2.3). Instead, there is a negative estimated relationship
that contradicts economic interpretation. This could be a result of an
issue with model specification, since SpAMs assume there is no
interaction between the themes and can have erroneous estimations of
the dependence. Still, there are cases in which a partially negative
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Figure 4.2.2: Partial Dependence of Chinese Value on U.S. SpAM Model

relationship can make sense, such as in cases of high returns reverting
to the mean or in cases where the general market trend is negative.

Looking at the SpAMs for Chinese market returns, we see that the
same model that overfit the U.S. market has an R2 = 0.9999, which is
likely also overfit. Generally, we see less variation in Chinese market
returns being explained by the theme data, with R2 < 0.50 across all
models. The best fitting model has R2 = 0.4968 and uses both themes
and is trained on 2001 to 2024. Interestingly, we’ve seen this trend
both times; it seems that introducing more data in these cases is far
more valuable than segmenting the data due to detected structural
breaks.

The Chinese model shows many more curves in the factors. In
particular, we will examine Chinese Accruals, U.S. Profit Growth, and
Chinese Momentum. Recall that the Accruals theme measures the
difference between a company’s reported earnings and its cash flows;
lower values signal healthier earnings.
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Figure 4.2.3: Partial Dependence of U.S. Momentum on U.S. SpAM Model

Table 4.2.2: SpAM Regressions Predicting Chinese Market Returns

Time Period Granularity Predictors Adjusted R2 R2

2001–2024 Daily both_themes 0.4357 0.4421
2001–2024 Daily chn_themes 0.4278 0.4324
2001–2024 Daily usa_themes 0.0173 0.0212
2016–2024 Daily both_themes 0.3906 0.4038
2016–2024 Daily chn_themes 0.3678 0.3763
2016–2024 Daily usa_themes 0.0502 0.0618
2001–2024 Monthly both_themes 0.4090 0.4968
2001–2024 Monthly chn_themes 0.3903 0.4564
2001–2024 Monthly usa_themes 0.0553 0.1055
2016–2024 Monthly both_themes 0 0.9999
2016–2024 Monthly chn_themes 0.0036 0.0053
2016–2024 Monthly usa_themes 0.0752 0.1173
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Chinese Accruals (see Figure 4.2.4) have a negative relationship
with the Chinese market. This matches our economic intuition.
Interestingly, it seems as though the theme has increasing effects as
the value increases; this matches our intuition of investors detecting
signals and market behavior.

Figure 4.2.4: Partial Dependence of Chinese Accruals on Chinese SpAM
Model

U.S. Profit Growth (see Figure 4.2.5) also has a negative
relationship with the Chinese market. Larger values of negative profit
growth in the U.S. is related to increasing Chinese market returns;
this likely is a result of investors diversifying their portfolios into the
Chinese market. Even more interestingly, even at 0, the partial
dependence of U.S. profit growth has a negative effect on the Chinese
returns.

Chinese Momentum (see Figure B.0.17) also has a negative
relationship with the Chinese market. This is interesting as the
previous SpAM model also detected such a relationship. While this
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Figure 4.2.5: Partial Dependence of U.S. Profit Growth on Chinese SpAM
Model

doesn’t match basic economic intuition, it poses an interesting trend
in the data.

I also ran 24 other SpAMs on the factor data (see Table A.0.5 for
results). The monthly data with the factors all overfit to the data,
showing an R2 = 1 and having more factors than observations in the
dataset. Similar trends occurred in cases where daily data was used
for the 2016-2024 time period. Of the models that used the 2001-2024
data at a daily granularity, the U.S. factors had an R2 = 0.7900 on
the U.S. market and the Chinese factors had an R2 = 0.6021 on the
Chinese market. The results for the 2001-2024 models using the daily
data are also shown in Table 4.2.3.

The SpAM models we’ve fit have shown nonlinear relationships
among the predictors, but they assume an additive relationship and
do not account for interactions between the terms. Kernel regressions
are explored next as a nonparametric way to explore the dependencies
between themes and market returns.
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Table 4.2.3: 2021-2024 Factor-Based SpAM Regression Summary

Time Period Granularity Target Market Predictors Adjusted R2 R2

2001–2024 Daily USA usa_factors 0.7768 0.7900
2001–2024 Daily USA chn_factors 0.0216 0.0565
2001–2024 Daily USA both_factors 0.7606 0.7767
2001–2024 Daily China usa_factors 0.0564 0.0871
2001–2024 Daily China chn_factors 0.5815 0.6021
2001–2024 Daily China both_factors 0.5874 0.6152

4.3 Kernel Regression

Kernel regression assumes nothing about the form of the relationship
between the predictors and the outcomes, making it the most flexible
of all models used so far.

Using statsmodels’ KernelReg with a Gaussian kernel and the
Nadaraya-Watson estimator, I fit 24 kernel regressions total on the
U.S. and Chinese markets using only the themes data. The themes
data was chosen to increase interpretability of the model. Of the 24
models, all 12 using data at the monthly granularity overfit (see
Table A.0.6). Of the 6 models assigned to each countries’ returns, 2
only include the U.S. themes, 2 only include the China themes, and 2
include both. The results of the models are shown in Table 4.3.1.

Recall that the bandwidth, which represents the length of the
boundary by which points are designated as neighboring, is a very
important hyperparameter in kernel regressions. A very small
bandwidth causes the model to overfit and a very large bandwidth
causes the model to underfit. To decrease the search space for
datasets at the daily granularity, bandwidth selection was done by
randomly choosing 25% of the data and using that subsample to
determine the optimal bandwidth using cross validation. This is likely

65



Table 4.3.1: Kernel Regression Summary

Time Period Market Data Used # Predictors Adjusted R2 R2

2001–2024 China both_themes 26 0.9836 0.9837
2001–2024 China chn_themes 13 0.9041 0.9043
2001–2024 China usa_themes 13 0.1101 0.1122
2001–2024 USA both_themes 26 0.9913 0.9914
2001–2024 USA chn_themes 13 -0.0024 4.6e-15
2001–2024 USA usa_themes 13 0.8821 0.8824
2016–2024 China both_themes 38 0.9992 0.9992
2016–2024 China chn_themes 15 0.8505 0.8516
2016–2024 China usa_themes 23 0.9056 0.9067
2016–2024 USA both_themes 38 0.9998 0.9998
2016–2024 USA chn_themes 15 0.7900 0.7916
2016–2024 USA usa_themes 23 0.9523 0.9529

why the fifth model in Table 4.3.1 has such a low R2. The R2 would
have likely been low as we’ve seen that Chinese themes very weakly
explain the variability in U.S. returns and do so at a weaker trend
than the vice versa, which had an R2 = 0.1122.

Analyzing plots that show the predicted and actual results of each
model, we draw important insights on how the models performed with
the different information they were provided.

Looking at the kernel regressions fit on the Chinese market returns
first, we see that the model was able to reproduce some of the general
trends in the data using the Chinese themes only (see Figure 4.3.1).
The model that used both the U.S. and Chinese themes performed
even better, picking up on better trends in the data and making more
accurate predictions (see Figure 4.3.2). This shows that there are
some signals being picked up by the data, though their estimated
functions might be overfit.

Most interesting is the kernel regression on the Chinese market that
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Figure 4.3.1: Chinese Market Kernel Regression (Chinese Themes): Actual vs
Predicted

Figure 4.3.2: Chinese Market Kernel Regression (Chinese and U.S. Themes):
Actual vs Predicted
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uses only U.S. themes, shown in Figure 4.3.3. Even with the economic
themes from the U.S., the model frequently predicted values very
close to 0, even when the actual values were quite far. We note that
some of the trends are picked up by the signals; we see that points
tend to be estimated somewhere between 0 and the actual value for
estimates within [-0.02, 0.02].

Figure 4.3.3: Chinese Market Kernel Regression (U.S. Themes): Actual vs
Predicted

The U.S. market exhibited similar trends in the kernel regressions
where it only had U.S. themes and themes from both countries (see
Figure B.0.18 and Figure B.0.19). The most interesting portion of
this analysis was when looking at the kernel regression on the U.S.
market that only had access to the Chinese economic themes. The
model consistently predicted 0 for returns (see Figure 4.3.4),
indicating no signal being picked up from the Chinese themes.

We know this to be consistent with our other models. Generally,
the Chinese market is related to changes in signals from the U.S.
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Figure 4.3.4: U.S. Market Kernel Regression (Chinese Themes): Actual vs
Predicted

economy at a rate much higher than the U.S. market’s equivalent with
the Chinese economy.

Analyzing the Chinese kernel model that used both Chinese and
U.S. economic themes over the 2001 to 2024 time period, we notice a
case of potentially conflicting signals being picked up from the U.S.
market from profitability and profit growth, several curves that do not
align with economic intuition, and other curves that do align with
economic intuition.

Of the curves that do match economic intuition, we notice a few
trends that have opposite directions in the data. Chinese value has a
positive linear relationship with the Chinese returns, shown in
Figure B.0.20. An opposite reaction is shown in the U.S. value, which
is negative relationship with Chinese returns, shown in Figure B.0.21.
These match our economic intuition. The Chinese market returns
should increase when Chinese companies have more value and
decrease when U.S. companies have more value.
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The partial dependence plots for U.S. profit growth and profitability
were also conflicting. Chinese market returns had a smooth negative
relationship with U.S. profitability (see Figure 4.3.5), which matches
our economic intuition. However, the relationship with U.S. profit
growth is seen as a generally positive one, with a negative effect in [-2,
1] (see Figure 4.3.6). Although this seems to be potentially conflicting
information, it does not go against our economic intuition. Cases in
which U.S. companies are either experiencing tremendous change can
be caused by significant global situations that impact both countries.

Figure 4.3.5: Partial Dependence for Chinese Kernel Regression: U.S. Prof-
itability

There were also two cases of potential overfitting. The U.S.
Accruals and U.S. Low Leverage Growth showed rocky curves with
un-intuitive trends towards the extremes of the data, see Figure 4.3.7
and Figure B.0.22.
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Figure 4.3.6: Partial Dependence for Chinese Kernel Regression: U.S. Profit
Growth

Figure 4.3.7: Partial Dependence for Chinese Kernel Regression: U.S. Accru-
als
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5
Discussion

Reviewing the trends in the models, we recap several important
trends about the methodologies used and their results. The linear
regressions and regularized regressions achieved moderate R2 and
Adjusted-R2 values for predicting U.S. returns using only U.S.
economic data and for predicting Chinese returns using only Chinese
economic data, achieving 0.70 ≤ R2 ≤ 0.80 for the U.S. market and
0.55 ≤ R2 ≤ 0.60 for the Chinese market. While the Chinese
economic data gave no additional explanatory power to the U.S.
market models, the U.S. economic data more consistently improved
the predictions of Chinese returns. Still, there were some issues with
the linear models, with residual analyses revealing heteroskedasticity
and otherwise suggesting nonlinearity in the factors.

The SpAM models often saw similar R2 and Adjusted-R2 values,
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showing that the generalization beyond linearity did not hurt the
models ability to pick up on trends. In some cases, the R2 and
Adjusted-R2 values were even higher; however, the model was more
prone to overfitting on the data, especially in cases where the time
frames were short or when using larger number of predictors. The
model suffered from the lack of interpretability as well, where a plot
was required to understand the relationship between an economic
measure and the returns.

The kernel regression models often had very high R2 and
Adjusted-R2 scores, indicating that the model could almost replicate
the in-sample data. This was, in a lot of cases, the result of severe
overfitting. Still, there were some interesting results captures in some
of the economic curves, and even more interesting results in
cross-country prediction. Though consistent with previous
approaches, cross-country prediction trends were very interesting to
examine in the nonparametric model. The partial dependence plots
revealed some interesting trends in the factors that aligned with
economic intuition and were very helpful in assessing overfitting.

As far as general trends within the results, domestic economic data
was the strongest predictor for both the U.S. and Chinese market
returns. The Chinese market gained more explanatory power when
U.S. economic data was introduced, which supports the view that
global markets receive stronger signals from the U.S. market than in
the opposite direction.

The models with the least assumptions also had a strong tendency
to overfit to the data, especially in scenarios where there were limited
samples and a larger number of predictors. While logical in principle,
this posed a great challenge when analyzing market data, especially
when segmenting for structural breaks in the data.

Throughout the models, there is a trade off between flexibility and
the ease of interpretation. Linear models worked really well, achieving
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high R2 values while maintaining a good level of easy interpretability.
As the models became less structures, and thus more capable of
handling more complex data, they also became more difficult to
interpret. The partial effect plots in the SpAMs and kernel regressions
also suffered from interpretability as it makes it even harder to
understand how a factor is impacted with other factor movement.

When using less-structured models, it is more difficult to get
enough data without breaking the stationarity assumption in the
data. Assessments of structural breaks in the market yielded several
scenarios over a few decades where the underlying structural factors
had shifted behind the data. This is a significant challenge when
attempting to understand the intricacies of the market.

There are several ways to build off this work. The first next step is
to introduce models that can naturally capture interactions among
the economic factors without requiring predefined functional forms,
perhaps with tree-based methods. Alternatively, using the several
decades of data available to better estimate the GAMs and SpAMs to
allow for pairwise interactions. In order to deal with structural breaks
in the data, one can try to implement indicator variables in their
analyses. If attempting to work on SpAMs or kernel regressions, more
nuanced regularization can help mitigate the large amount of
overfitting seen in the models.

Another natural first step would be to attempt the same methods
on rolling-window estimates, which might capture the trends of the
data better and reduce the noise in the model estimates. Analyses in
individual sectors might benefit from stronger and more interpretable
insights as sector-specific spillovers are easier to detect, model, and
understand.

The economic signals picked up can also be tested for their market
power, creating specific portfolio strategies using the indicators from
each country. This would be an interesting way to quantity the
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strength of certain signals and the benefits of accounting for
information from other markets.

The relationship between the U.S. and Chinese markets has been
long studied by researchers. The empirical challenges of quantifying
such a relationship have changed significantly over the past decade.
Economic and financial data are now publicly accessible at a rate
greater than ever before, allowing for exploration in the markets.

The research done in this thesis should serve as a stepping stone for
testing for market integrations and cross-market signals. Mis-specified
models and overfit partial effects provide more information about the
models and about their relations to the markets. With global markets
trending towards increasing co-integration, they will reveal more and
more information about their intricacies as time goes by.
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Table A.0.1: Regressions Predicting U.S. Market Returns

Time Period Granularity Predictors Adjusted R2 R2

2001–2024 Daily usa_factors 0.7465 0.7526
2001–2024 Daily chn_factors 0.0164 0.0398
2001–2024 Daily both_factors 0.7483 0.7603
2016–2024 Daily usa_factors 0.6982 0.7342
2016–2024 Daily chn_factors 0.0202 0.0977
2016–2024 Daily both_factors 0.6978 0.7577
2001–2024 Daily usa_themes 0.5784 0.5794
2001–2024 Daily chn_themes 0.0074 0.0098
2001–2024 Daily both_themes 0.5795 0.5815
2016–2024 Daily usa_themes 0.5218 0.5274
2016–2024 Daily chn_themes 0.0126 0.0201
2016–2024 Daily both_themes 0.5224 0.5316
2001–2024 Monthly usa_factors 0.7494 0.8670
2001–2024 Monthly chn_factors 0.1197 0.4952
2001–2024 Monthly both_factors 0.7699 0.9761
2016–2024 Monthly usa_factors 0 1
2016–2024 Monthly chn_factors 0 1
2016–2024 Monthly both_factors 0 1
2001–2024 Monthly usa_themes 0.6043 0.6227
2001–2024 Monthly chn_themes 0.0104 0.0565
2001–2024 Monthly both_themes 0.6092 0.6456
2016–2024 Monthly usa_themes 0.6139 0.6724
2016–2024 Monthly chn_themes 0.1886 0.3279
2016–2024 Monthly both_themes 0.5822 0.7172
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Table A.0.2: Regressions Predicting Chinese Market Returns

Time Period Granularity Predictors Adjusted R2 R2

2001–2024 Daily usa_factors 0.0490 0.0719
2001–2024 Daily chn_factors 0.5509 0.5616
2001–2024 Daily both_factors 0.5656 0.5864
2016–2024 Daily usa_factors 0.0815 0.1910
2016–2024 Daily chn_factors 0.5599 0.5948
2016–2024 Daily both_factors 0.5918 0.6728
2001–2024 Daily usa_themes 0.0139 0.0163
2001–2024 Daily chn_themes 0.4168 0.4182
2001–2024 Daily both_themes 0.4225 0.4252
2016–2024 Daily usa_themes 0.0467 0.0578
2016–2024 Daily chn_themes 0.3586 0.3635
2016–2024 Daily both_themes 0.3825 0.3944
2001–2024 Monthly usa_factors 0 1
2001–2024 Monthly chn_factors 0 1
2001–2024 Monthly both_factors 0 1
2016–2024 Monthly usa_factors 0.1830 0.3068
2016–2024 Monthly chn_factors 0.2571 0.3847
2016–2024 Monthly both_factors 0.3444 0.5563
2001–2024 Monthly usa_themes 0.0518 0.0960
2001–2024 Monthly chn_themes 0.2677 0.3018
2001–2024 Monthly both_themes 0.3147 0.3786
2016–2024 Monthly usa_themes 0.1830 0.3068
2016–2024 Monthly chn_themes 0.2571 0.3847
2016–2024 Monthly both_themes 0.3444 0.5563
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Table A.0.3: Best Regressions Predicting U.S. Market Returns by Regulariza-
tion Type

Time Period Granularity Predictors Technique Adjusted R2 R2

2001–2024 Daily both_factors Ridge 0.7385 0.7510
2001–2024 Daily chn_factors Ridge 0.0036 0.0272
2001–2024 Daily usa_factors Ridge 0.7378 0.7441
2016–2024 Daily both_factors Ridge 0.6343 0.7069
2016–2024 Daily chn_factors Ridge -0.0358 0.0462
2016–2024 Daily usa_factors Ridge 0.6494 0.6912
2001–2024 Daily both_themes Ridge 0.5795 0.5815
2001–2024 Daily chn_themes Ridge 0.0057 0.0081
2001–2024 Daily usa_themes Ridge 0.5783 0.5793
2016–2024 Daily both_themes Ridge 0.5224 0.5316
2016–2024 Daily chn_themes Ridge 0.0053 0.0129
2016–2024 Daily usa_themes Ridge 0.5218 0.5273
2001–2024 Monthly both_factors Ridge -0.9439 0.7979
2001–2024 Monthly chn_factors Ridge -0.6224 0.0696
2001–2024 Monthly usa_factors Ridge 0.6642 0.8219
2016–2024 Monthly both_factors Lasso 0 0.8773
2016–2024 Monthly chn_factors Ridge 0 0.1341
2016–2024 Monthly usa_factors Ridge 0 0.8919
2001–2024 Monthly both_themes Ridge 0.6088 0.6452
2001–2024 Monthly chn_themes Ridge -0.0354 0.0128
2001–2024 Monthly usa_themes Ridge 0.6043 0.6227
2016–2024 Monthly both_themes Ridge 0.5781 0.7145
2016–2024 Monthly chn_themes Ridge -0.1724 0.0289
2016–2024 Monthly usa_themes Ridge 0.6138 0.6723
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Table A.0.4: Best Regressions Predicting Chinese Market Returns by Regu-
larization Type

Time Period Granularity Predictors Technique Adjusted R2 R2

2001–2024 Daily both_factors Ridge 0.5313 0.5537
2001–2024 Daily chn_factors Ridge 0.5242 0.5354
2001–2024 Daily usa_factors Ridge 0.0308 0.0542
2016–2024 Daily both_factors Lasso 0.4712 0.5761
2016–2024 Daily chn_factors Ridge 0.5162 0.5545
2016–2024 Daily usa_factors Ridge -0.0105 0.1100
2001–2024 Daily both_themes Ridge 0.4225 0.4252
2001–2024 Daily chn_themes Ridge 0.4168 0.4182
2001–2024 Daily usa_themes Ridge 0.0126 0.0149
2016–2024 Daily both_themes Ridge 0.3815 0.3935
2016–2024 Daily chn_themes Ridge 0.3580 0.3629
2016–2024 Daily usa_themes Ridge 0.0295 0.0409
2001–2024 Monthly both_factors Ridge -4.5676 0.4213
2001–2024 Monthly chn_factors Ridge -0.1556 0.3373
2001–2024 Monthly usa_factors Ridge -0.6283 0.1362
2016–2024 Monthly both_factors Ridge 0 0.3703
2016–2024 Monthly chn_factors Elastic Net 0 0.3409
2016–2024 Monthly usa_factors Ridge 0 0.2210
2001–2024 Monthly both_themes Ridge 0.2404 0.3112
2001–2024 Monthly chn_themes Ridge 0.2179 0.2543
2001–2024 Monthly usa_themes Ridge 0.0335 0.0785
2016–2024 Monthly both_themes Ridge -0.0357 0.2991
2016–2024 Monthly chn_themes Ridge 0.1933 0.3318
2016–2024 Monthly usa_themes Ridge 0.0271 0.1745
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Table A.0.5: Factor-Based SpAM Regression Summary

Time Period Granularity Target Market Predictors Adjusted R2 R2

2001–2024 Daily USA usa_factors 0.7768 0.7900
2001–2024 Daily USA chn_factors 0.0216 0.0565
2001–2024 Daily USA both_factors 0.7606 0.7767
2001–2024 Daily China usa_factors 0.0564 0.0871
2001–2024 Daily China chn_factors 0.5815 0.6021
2001–2024 Daily China both_factors 0.5874 0.6152
2016–2024 Daily USA usa_factors 0.7246 0.7592
2016–2024 Daily USA chn_factors 0.0398 0.1235
2016–2024 Daily USA both_factors 0.8806 0.9931
2016–2024 Daily China usa_factors 0.1174 0.1727
2016–2024 Daily China chn_factors 0.5781 0.6148
2016–2024 Daily China both_factors 0.8638 0.9922
2001–2024 Monthly USA usa_factors 0 1
2001–2024 Monthly USA chn_factors 0 1
2001–2024 Monthly USA both_factors 0 1
2001–2024 Monthly China usa_factors 0 1
2001–2024 Monthly China chn_factors 0 1
2001–2024 Monthly China both_factors 0 1
2016–2024 Monthly USA usa_factors 0 1
2016–2024 Monthly USA chn_factors 0 1
2016–2024 Monthly USA both_factors 0 1
2016–2024 Monthly China usa_factors 0 1
2016–2024 Monthly China chn_factors 0 1
2016–2024 Monthly China both_factors 0 1
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Table A.0.6: Month-Granularity Kernel Regression Summary

Time Period Market Data Used # Predictors Adjusted R2 R2

2001–2025 China both_themes 26 0.9999 0.9999
2001–2025 China chn_themes 13 0.9400 0.9428
2001–2025 China usa_themes 13 0.4555 0.4809
2016–2025 China both_themes 32 1.0000 1.0000
2016–2025 China chn_themes 17 0.9975 0.9980
2016–2025 China usa_themes 15 0.9910 0.9923
2001–2025 USA both_themes 26 0.9999 0.9999
2001–2025 USA chn_themes 13 0.7315 0.7440
2001–2025 USA usa_themes 13 0.9678 0.9693
2016–2025 USA both_themes 32 1.0000 1.0000
2016–2025 USA chn_themes 17 0.9957 0.9965
2016–2025 USA usa_themes 15 0.9983 0.9985
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Figures

Figure B.0.1: Theme Volatility (6-Month Rolling Standard Deviation)
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Figure B.0.2: Number of Factor Outliers Over Time

Figure B.0.3: Number of Theme Outliers Over Time
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Figure B.0.4: Missing Factors Heatmap (Top 40 Factors, Monthly Data)
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Figure B.0.5: U.S. Daily Themes Correlation Network
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Figure B.0.6: China Daily Themes Correlation Network

87



Figure B.0.7: U.S. Daily Factors Correlation Network
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Figure B.0.8: China Daily Factors Correlation Network
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Figure B.0.9: Case 1: Residual Plot

Figure B.0.10: Case 1: Q-Q Plot
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Figure B.0.11: Case 2: Q-Q Plot

Figure B.0.12: Case 3: Q-Q Plot
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Figure B.0.13: Case 4: Q-Q Plot

Figure B.0.14: Top Coefficients in Best U.S. Market Regularized Regression
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Figure B.0.15: Top Coefficients in Best Chinese Market Regularized Regres-
sion

Figure B.0.16: Case 5: Q-Q Plot
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Figure B.0.17: Partial Dependence of Chinese Momentum on Chinese SpAM
Model

Figure B.0.18: U.S. Market Kernel Regression (U.S. Themes): Actual vs
Predicted
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Figure B.0.19: U.S. Market Kernel Regression (U.S. and Chinese Themes):
Actual vs Predicted

Figure B.0.20: Partial Dependence for Chinese Kernel Regression: Chinese
Value
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Figure B.0.21: Partial Dependence for Chinese Kernel Regression: U.S.
Value

Figure B.0.22: Partial Dependence for Chinese Kernel Regression: U.S. Low
Leverage Growth
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